Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Journal of Building Engineering ; : 106045, 2023.
Artículo en Inglés | ScienceDirect | ID: covidwho-2221041

RESUMEN

Floor radiation (FR) is one of the widely used heating modes in winter. However, the widespread and high outbreak of Corona Virus Disease 2019 (COVID-19) has made the disadvantage of floor radiation that lacks fresh air and air movement exposed as a deficiency. To seek a heating mode that can realize a comfortable and healthy indoor environment with low cost, the interactive cascade ventilation (ICV) coupling with multiple low-grade sources was proposed in this study. Energy efficiency, thermal comfort and air quality were investigated by comparing with FR and floor radiation with mixing ventilation (FRMV). The results showed that by elevating the same indoor temperature, ICV can reduce indoor heat transfer by 28.41% and 30.94% than FR and FRMV, respectively. And ICV also presented the highest system COP by introducing multiple low-grade sources. In terms of thermal comfort, the indoor environment served by ICV was closer to thermal neutrality, and the subjective thermal comfort can also be enhanced by 10% and 8% relative to FR and FRMV. The CO2 test results indicated that by introducing the ICV, indoor air quality can be improved by 36.68% and 61.45% over FR and FRMV with the contaminant removal rate significantly accelerated. During the pandemic, ICV can reduce the COVID-19 infection rate by 9.6% and 55.5% within 8 h and 30 min compared with FRMV. The conclusions obtained in this paper can provide new ideas for designing air conditioning systems in the epidemic and the context of carbon reduction.

2.
Journal of Building Engineering ; : 105728, 2022.
Artículo en Inglés | ScienceDirect | ID: covidwho-2159319

RESUMEN

With the wide spread of COVID-19, numerous cases demonstrate that proper ventilation method can reduce the cross-infection risk obviously. Interactive cascade ventilation (ICV) as a recently proposed ventilation method, the advantage of indoor environment construction has been proven. However, few studies are conducted to investigate the virus prevention and control characteristics of ICV, which is particularly important under epidemic normalizing. Hence, this study explored and compared the cross-infection control performance of three ventilation strategies, namely mixing ventilation (MV), stratum ventilation (SV), and interactive cascade ventilation (ICV), with a validated CFD model. A typical office was selected as the background scene, where an infected person coughs, sneezes with standing or sitting at different positions. Exposure doses, health infection risk, and disease burden (DB) were employed as the evaluation indicators under different ventilation methods of multi-scenario. The research results indicated that the average aerosol exposure dose among the human respiratory region under ICV was 0.29 g/day, which was reduced by 67 % and 50 % compared with MV and SV. In addition, only in ICV can the health infection risk meets the EPA standard. The average disease health burden for exposed persons under ICV was 0.93 × 10−6 DALYs pppy, which was 37 % and 70 % lower than SV and MV. The findings obtained from this study confirm that ICV performs excellently in reducing the cross-infection risk, providing the theoretical basis for future epidemic prevention and control.

3.
Energy Build ; 278: 112623, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2095305

RESUMEN

With increasing energy use and outbreaks of respiratory infectious diseases (such as COVID-19) in buildings, there is a growing interest in creating healthy and energy-efficient indoor environments. A novel heating system named low-temperature radiant floor coupled with intermittent stratum ventilation (LTR-ISV) is proposed in this study. Thermal performance, indoor air quality, energy and exergy performance were investigated and compared with conventional radiant floor heating (CRFH) and conventional radiant floor heating with mixing ventilation (CRFH + MV). The results indicated that LTR-ISV had a more uniform operative temperature distribution and overall thermal sensation, and air mixing was enhanced without generating additional draft sensation. Compared with CRFH and CRFH + MV, the indoor CO2 concentration in LTR-ISV can be reduced by 1355 ppm and 400 ppm, respectively. Airborne transmission risk can also be reduced by 5.35 times. The coefficient of performance for CRFH, CRFH + MV, and LTR-ISV during working hours was 4.2, 2.5, and 3.4, respectively. The lower value of LTR-ISV was due to the high energy usage of the primary air handing unit. In the non-working hours, LTR-ISV was 0.6 and 1.3 higher compared to CRFH and CRFH + MV, respectively. The exergy efficiency of LTR-ISV, CRFH, and CRFH + MV was 81.77 %, 76.43 %, and 64.71 %, respectively. Therefore, the LTR-ISV system can meet the requirements of high indoor air quality and thermal comfort and provides a reference for the energy-saving use of low-grade energy in space heating.

4.
Int J Environ Res Public Health ; 19(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2010075

RESUMEN

The COVID-19 pandemic has made significant impacts on public health, including human exposure to airborne pathogens. In healthcare facilities, the locations of return air vents in ventilation systems may have important effects on lowering airborne SARS-CoV-2 transmission. This study conducted experiments to examine the influence of different return air vents' heights (0.7 m, 1.2 m, and 1.6 m) on the particle removal effects in a simulated patient ward. Three different ventilation systems were examined: top celling air supply-side wall return (TAS), underfloor air supply-side wall return (UFAS) and side wall air supply-side wall return (SAS). CFD simulation was applied to further study the effects of return air inlets' heights (0.3 m, 0.7 m, 1.2 m, 1.6 m, and 2.0 m) and air exchange rates. The technique for order of preference by similarity to ideal solution (TOPSIS) analysis was used to calculate the comprehensive scores of 60 scenarios using a multi-criterion method to obtain the optimal return air inlets' heights. Results showed that for each additional 0.5 m distance in most working conditions, the inhalation fraction index of medical staff could be reduced by about 5-20%. However, under certain working conditions, even though the distances between the patients and medical personnel were different, the optimal heights of return air vents were constant. For TAS and UFAS, the optimal return air inlets' height was 1.2 m, while for SAS, the best working condition was 1.6 m air supply and 0.7 m air return. At the optimum return air heights, the particle decay rate per hour of SAS was 75% higher than that of TAS, and the rate of particle decay per hour of SAS was 21% higher than that of UFAS. The location of return air inlets could further affect the operating cost-effectiveness of ventilation systems: the highest operating cost-effectiveness was 8 times higher than the lowest one.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/prevención & control , Bahías , COVID-19/epidemiología , Hospitales , Humanos , Pandemias , SARS-CoV-2 , Ventilación/métodos
5.
Build Environ ; 212: 108831, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1654126

RESUMEN

In the era of Corona Virus Disease 2019 (COVID-19), inappropriate indoor ventilation may turn out to be the culprit of microbial contamination in enclosed spaces and deteriorate the environment. To collaboratively improve the thermal comfort, air quality and virus spread control effect, it was essential to have an overall understanding of different ventilation modes. Hence, this study reviewed the latest scientific literature on indoor ventilation modes and manuals of various countries, identified characteristics of different ventilation modes and evaluated effects in different application occasions, wherefore to further propose their main limitations and solutions in the epidemic era. For thermal comfort, various non-uniform ventilation modes could decrease the floor-to-ceiling temperature difference, draft rate or PPD by 60%, 80% or 33% respectively, or increase the PMV by 45%. Unsteady ventilation modes (including intermittent ventilation and pulsating ventilation) could lower PPD values by 12%-37.8%. While for air quality and virus spread control, non-uniform ventilation modes could lower the mean age of air or contaminants concentration by 28.3%-47% or 15%-47% respectively, increase the air change efficiency, contaminant removal effectiveness or protection efficiency by 6.6%-10.4%, 22.6% or 14%-50% respectively. Unsteady ventilation mode (pulsating ventilation) could reduce the peak pollutant concentration and exposure time to undesirable concentrations by 31% and 48% respectively. Non-uniform modes and unsteady modes presented better performance in thermal comfort, air quality and virus spread control, whereas relevant performance evaluation indexes were still imperfect and the application scenarios were also limited.

6.
Appl Energy ; 306: 118135, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1509566

RESUMEN

With the wide spread of novel coronavirus SARS-CoV-2 pandemic around the word, high quality indoor environment and more efficient mechanical ventilation become the new focus of scholars' attention. Stratum ventilation refers to the ventilation mode that the air supply port on the side wall slightly higher than the height of the working area directly sends fresh air into the working breathing area. As an efficient mechanical ventilation mode, it can create a more healthy and comfortable indoor environment. However, the impact caused by airflow characteristic under stratum ventilation on the thermal performance and indoor comfort is noteworthy due to its supply air outlets are close to the occupied zone. It is widely known that parallel turbulent jets are important for the flow structure and air distribution. Hence, an optimum parallel jet spacing (PJS) between two jet centerlines can obviously enhance the fluid interaction and indoor thermal comfort with low energy consumption. Therefore, this study aims to investigate the impact of the PJS on the performance of multi-jet stratum ventilation. A validated Computational Fluid Dynamics (CFD) model was used to conduct the year-round multivariate analysis. A total of eight PJSs, four inlet locations and five climate zones were discussed synthetically. Air distribution performance index (ADPI), ventilation effectiveness (Et ) and economic comfort coefficient were employed as the evaluation indicators to assess the thermal comfort and energy efficiency in various scenarios. Research results indicated that the PJS showed different influences on the indoor thermal comfort and energy utilization efficiency as a result of cooperative effect including energy dissipation, air short-circuit probability, air distribution uniformity and airflow path. Combining with building energy simulation method, the optimum PJSs of stratum ventilation with different air inlet positions in five climate zones were obtained, which can help provide a comfortable indoor thermal environment and improve energy efficiency in a low-cost way. The data and conclusions presented in this study can supplement the theoretical basis for the actual applications of multiple-jet stratum ventilation used in an office.

7.
Sustain Cities Soc ; 73: 103102, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1272721

RESUMEN

In recent years, a large number of respiratory infectious diseases (especially COVID-19) have broken out worldwide. Respiratory infectious viruses may be released in the air, resulting in cross-infection between patients and medical workers. Indoor ventilation systems can be adjusted to affect fine particles containing viruses. This study was aimed at performing a series of experiments to evaluate the ventilation performance and assess the exposure of healthcare workers (HW) to virus-laden particles released by patients in a confined experimental chamber. In a typical ward setting, four categories (top supply and exhaust, side supply and exhaust) were evaluated, encompassing 16 different air distribution patterns. The maximum reduction in the cumulative exposure level for HW was 70.8% in ventilation strategy D (upper diffusers on the sidewall supply and lower diffusers on the same sidewall return). The minimum value of the cumulative exposure level for a patient close to the source of the contamination pertained to Strategy E (upper diffusers on the sidewall supply and lower diffusers on the opposite sidewall return). Lateral ventilation strategies can provide significant guidance for ward operation to minimizing the airborne virus contamination. This study can provide a reference for sustainable buildings to construct a healthy indoor environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA